

thnikk Keypad Documentation

Welcome! This is the documentation for all current models of my keypads.

Here you can find feature lists for models, guides to install drivers, remap the keys, and change your switches. This will be updated with my code so it should always be up to date!

Pages

	Buyer’s Guide

	Quickstart Guide

	Keypad Models

	Coming Soon

	Fightboard

	Driver Installation

	Remapping Your Keypad

	Programming Your Keypad

	Making Changes to the Firmware

	Changing Your Keypad’s Switches

	Troubleshooting Guide

Buyer’s Guide

A lot of people have had a lot of questions about my keypads for determining which model and what parts would be better for them, so I’ll outline the differences here.

Switches

[image: _images/d4baf2b087.jpg]
This may be the most important choice you can make with your keypad. Luckily, you aren’t stuck with your choice thanks to the switch changing kit (unless you buy the LED model) so don’t feel too stressed out. It’s easy to say it’s “personal preference,” so I’ll instead try to give you some objective information that you can base your decision on.

Clicky

[image: _images/Cherry-mx-blue.gif]
These have both a bump and an audible click when the switch is pressed to its actuation point. This is nice for typing (especially touch typing) since it’s a clear indication that you’ve pressed the switch. It’s great for avoiding “bottoming out,” meaning the switch is fully depressed, which can help reduce fatigue from typing over long periods of time.

However, playing osu! is not the same as typing. The game is much more hectic and if you try to feel or listen to the click, you will be pulling your atention away from the game. Some players may be able to take adavantage of the click, but I consider it to be very disadvantageous. It would be a nice option for a macro keypad if you want to use it for professional applications, but be mindful if you want to use it with other people around.

Tactile

[image: _images/Cherry-mx-brown.gif]
These offer the same benefit that blues do for typists, but the same downisde for osu players. They have the same bump at the actuation point but no audible click. These would also be nice for professional applications and are better in quiet environments.

Linear

[image: _images/Cherry-mx-red.gif]
Liear switches offer a nice variety in weight (actuation force) and don’t have any audible click or tactile bump. I would consider these the best for osu! and gaming use in general.

Actuation Force Table

Cherry MX VS Gateron

[image: _images/924542bfac8d54374e7adbede6c048c9b204c699.jpg?auto=format&fm=jpg&fit=crop&w=1023&dpr=1]
One other thing to mention is the difference between Gateron and Cherry switches. Cherry is a German company that’s been making these for a long time, but their patent ran out recently so a bunch of other companies started making MX clones. Among those companies is Gateron. They are considerably smoother feeling, where Cherry’s switches have a bit of a scratchy feel to them.

Cherry MX Silver

Though MX silvers (also referred to as MX Speed switches) have the same actuation force as MX reds, there are two key differences that set them apart. The first is their higher actuation point, at 1.2 mm instead of the 2 mm on a normal Cherry MX switch. This means the key will be detected as pressed much higher in the keystroke, but I think the same caveat exists that does with tactile/clicky switches. In a hectic gaming scenario, particularly with playing a rhythm game, it won’t make a difference if you’re bottoming out the keys. However, the second difference is that they bottom out at 3.4 mm instead of the typical 4 mm, which means it should have an impact (no matter how minuscule) whether you bottom out the keys or not.

Touch Keypad

This isn’t a switch, per se, but I think it’s worth including here just as a reminder that it’s an option. There are a few advantages to the touch keypad:

	It’s actually silent. You’re not pressing anything that moves, so it should be very similar to tapping directly on your desk but with a little extra padding thanks to the micro-suction tape on the bottom of the keypad.

	It’s small. The regular touch models are small enough to not even notice in a bag and the MegaTouch models are a bit bigger, but still thin enough to fit in a small backpack pocket without being bulgey.

	The travel distance is effectively zero. If you normally hover over your mechanical keys, this is worth considering since not only do you need to push down until your fingers touch the keycaps, but they have to continue to push the key down to the actuation point and maybe even to bottom out the switch, which can easily be ~5 mm. The touch models detect your fingers on contact so the only finger movement is to make contact with the pads.

There’s a bit of a learning curve. If you play any mobile rhythm games and don’t mind the feel, and especially if you turn off hit sounds like me, I think it’s a no-brainer and the adjustment period should be very short for you.

Keycaps

[image: _images/1f1l3yv.png]

DCS

DCS keycaps are what you’ll most commonly find on mechanical keyboards. They feature a subtle curve vertically that your finger can rest in and an angle depending on the row. They are comfortable for both typing and osu, but you have to be a bit more precise with your button presses.

DSA

DSA keycaps are a little more rare but offer a completely flat profile across all keyboard rows. This makes it easy to get a whole bunch of blank ones since all 1x keycaps are the same, unlike the DCS keycaps that differ by row. They have an old-fasioned look to them and feature a slight concave curvature on the top of the key. They work well for osu but less for typing on a keyboard since the flatness of them makes them less ergonomic.

Flat

[image: _images/C0LONW6UsAAjMPt.jpg]
Flat keycaps are the least common by far. I bought a few from pimpmykeyboard.com a year or two ago and loved them, but they were a bit too expensive so I figured nobody would want to pay $4+ for them. Fast forward to 2017 and I have a bit more experience in 3D printing. Now I can offer them not only as a cost saving measure to both you and myself, but also be happy that they work well and provide a very nice experience in osu.

These offer two major improvements over DCS and DSA keycaps. They expand the surface area of the top of the key to their maximum, giving you more leeway with where you press. They also allow me to have better control of both the travel distance and the max height of the keypad, which means that your hand won’t have to rest at as high of an angle which should result in a more comfortable experience over long sessions.

Quickstart Guide

Contratulations on receiving your keypad! This quick guide will walk you through how to use your keypad.

What’s in the box:

[image: http://www.thnikk.moe/docs/quickstart/box.jpg]

	Keypad

	Cable

Before use, remove protective tape film

The tape on the bottom of the keypad will fix it to your desk so it doesn’t move around during play. This tape has a film covering it that must be removed to expose its stickiness.

More (Optional)

These are some other things you can do after you get your keypad up and running.

Setting the LED mode

While the basic model’s side button is used exclusively as an escape key, it serves an additional purpose on all models with LEDs. By holding the button down and waiting for the LEDs to blink, you can change the LED mode. Wait for it to blink twice for the secondary action, which is for changing the brightness (or the colors on the custom mode.) For more info on LED modes and the side button for your keypad, please visit the models page here:

Models [http://docs.thnikk.moe/en/latest/models.html]

Remapping and Reprogramming

If you’re unhappy with the default button mapping of your keypad, visit this page to learn how to easily remap the buttons!

How to remap the buttons on your keypad. [http://docs.thnikk.moe/en/latest/remap.html]

If you’d like to change the functionality of the keypad, I have a reprogramming guide that you can visit here.

How to reprogram your keypad. [http://docs.thnikk.moe/en/latest/program.html]

If you wish for any additional functionality, I would appreciate it if you opened an issue on my GitHub.

GitHub [https://github.com/thnikk/newKeypad]

Changing Your Switches

If you’re unhappy with your original choice of switches, you can pop some new ones in! Check out my guide for the installation procedure:

Switch changing guide [http://docs.thnikk.moe/en/latest/switch.html]

Keypad Models

Basic Keypad

[image: _images/il_fullxfull.2002476588_gwbu.jpg]
A simple 2-key keypad. This was previously the “no bells and whistles” model, but now features a bottom-mounted RGB LED that adds some RGB underglow to the keypad! The side button functions as escape and is also used to change LED modes and the color of the keys on the “custom” LED mode.

Side button functionality

	Hold time

	Functionality

	Less than 0.5s

	Escape

	0.5 - 1.5s

	Change LED mode

	more than 1.5s

	Change brightness (Press Z to lower and X to raise)

	more than 1.5s (on custom LED mode)

	Change color per-key

LED modes

	Order

	Mode

	1

	Cycle - Fades through rainbow.

	2

	Reactive - Turns LEDs on when pressed and fades from red to green to blue to off when released.

	3

	Push Off - LEDs are normally white and fade from red to green to blue to off when the keys are pressed.

	4

	Custom - LED color can be set per-key.

	5

	BPM - LEDs turn white when pressed and change color depending on how much you hit them per second when released.

	6

	Color Change - Colors cycle in steps per-press per-key.

Touch Keypad

[image: _images/il_fullxfull.2002504482_tjhc.jpg]
A 2-key keypad that uses two capacitive metal pads instead of switches, which results in faster key presses (by removing key travel) and a slimmer keypad. It features LED modes specifically rewritten for this model and a side button that is… a screw? The side screw is just like the two top keys and will press the mapped key when touched (escape by default.)

Unlike the non-touch models, all configuration of the keypad can be done using a program like Termite and all settings will be saved to the keypad. This frees up the side button to function as a regular key and it can be remapped just like the top buttons.

LED modes

	Mode

	Description

	Cycle

	Fades through rainbow; White when key is pressed; Off when side button is pressed

	Reactive

	Turns to white when pressed and fades through r>g>b>off when released

	Reactive Inverted

	Fades through r>g>b>off when pressed and turns to white when released

	Color Change

	Colors cycle in steps per-press per-key.

	BPS

	Color changes depending number of keypresses per second and turns white while key is pressed

	Custom

	LED uses user-specified color (can be set through Termite)

	Off

	LED is turned off

MegaTouch Keypad

[image: _images/il_fullxfull.2050079633_4tm4.jpg]
A larger version of the 2K touch keypad. It features 60% larger touch pads (1 1/4” squares) with the same gap as the normal model, so it’s great whether you just want a larger touch area or you play with your index+ring fingers! It’s still just as slim at only 12 mm tall and is just as big as it needs to be to accommodate the touch pads. The side screw still functions as a capacitive button and is mapped to Escape by default, but can be easily remapped to something like ~ for quick restart. Configuration of LED modes and brightness can be done through the software remapper.

LED modes

	Mode

	Description

	Cycle

	Fades through rainbow; White when key is pressed; Off when side button is pressed

	Reactive

	Turns to white when pressed and fades through r>g>b>off when released

	Reactive Inverted

	Fades through r>g>b>off when pressed and turns to white when released

	Color Change

	Colors cycle in steps per-press per-key.

	BPS

	Color changes depending number of keypresses per second and turns white while key is pressed

	Custom

	LED uses user-specified color (can be set through Termite)

	Off

	LED is turned off

RGB Keypad

[image: _images/il_fullxfull.2050047263_tw2u.jpg]
A fancier version of the basic model that features not only the bottom-mounted LED, but also an RGB LED under each key. This makes for much brighter and more prominent lighting effects. The side button functions as escape and is also used to change LED modes, brightness, and the colors of the keys on the “custom” LED mode.

Side button functionality

	Hold time

	Functionality

	Less than 0.5s

	Escape

	0.5 - 1.5s

	Change LED mode

	more than 1.5s

	Change brightness (Press Z to lower and X to raise)

	more than 1.5s (on custom LED mode)

	Change color per-key

LED modes

	Order

	Mode

	1

	Cycle - Fades through rainbow.

	2

	Reactive - Turns LEDs on when pressed and fades from red to green to blue to off when released.

	3

	Push Off - LEDs are normally white and fade from red to green to blue to off when the keys are pressed.

	4

	Custom - LED color can be set per-key.

	5

	BPM - LEDs turn white when pressed and change color depending on how much you hit them per second when released.

	6

	Color Change - Colors cycle in steps per-press per-key.

Basic 4K Keypad

[image: _images/il_fullxfull.2002498160_26r3.jpg]
A 4-key version of the RGB keypad made for use with Taiko and Mania. Like the 2K basic model, this was previously the “no bells and whistles” model, but now features a bottom-mounted RGB LED that adds some RGB underglow to the keypad! The side button functions as escape and is also used to change LED modes and the color of the keys on the “custom” LED mode.

Side button functionality

	Hold time

	Functionality

	Less than 0.5s

	Escape

	0.5 - 1.5s

	Change LED mode

	more than 1.5s

	Change brightness (Press Z to lower and X to raise)

	more than 1.5s (on custom LED mode)

	Change color per-key

LED modes

	Order

	Mode

	1

	Cycle - Fades through rainbow.

	2

	Reactive - Turns LEDs on when pressed and fades from red to green to blue to off when released.

	3

	Push Off - LEDs are normally white and fade from red to green to blue to off when the keys are pressed.

	4

	Custom - LED color can be set per-key.

	5

	BPM - LEDs turn white when pressed and change color depending on how much you hit them per second when released.

	6

	Color Change - Colors cycle in steps per-press per-key.

4K Touch Keypad

[image: _images/il_fullxfull.2050075861_6wtx.jpg]
Looking for something slimmer, quieter, more portable, or all three? This 4-key keypad primarily for Mania and Taiko uses two capacitive pads instead of switches, which results in faster key presses (by eliminating key travel) and a slimmer design. It features LED modes specifically rewritten for this model and a side button that is… a screw? The side screw is just like the two top keys and will press the mapped key when touched (escape by default.)

Unlike the non-touch models, all configuration of the keypad can be done using a program like Termite and all settings will be saved to the keypad. This frees up the side button to function as a regular key and it can be remapped just like the top buttons.

LED modes

	Mode

	Description

	Cycle

	Fades through rainbow; White when key is pressed; Off when side button is pressed

	Reactive

	Turns to white when pressed and fades through r>g>b>off when released

	Reactive Inverted

	Fades through r>g>b>off when pressed and turns to white when released

	Color Change

	Colors cycle in steps per-press per-key.

	BPS

	Color changes depending number of keypresses per second and turns white while key is pressed

	Custom

	LED uses user-specified color (can be set through Termite)

	Off

	LED is turned off

4K RGB Keypad

[image: _images/il_fullxfull.2002497066_3tkb.jpg]
A fancier version of the basic 4K keypad made for use with Taiko and Mania. This model that features not only the bottom-mounted LED, but also an RGB LED under each key. This makes for much brighter and more prominent lighting effects. The side button functions as escape and is also used to change LED modes, brightness, and the colors of the keys on the “custom” LED mode.

Side button functionality

	Hold time

	Functionality

	Less than 0.5s

	Escape

	0.5 - 1.5s

	Change LED mode

	more than 1.5s

	Change brightness (Press Z to lower and X to raise)

	more than 1.5s (on custom LED mode)

	Change color per-key

LED modes

	Order

	Mode

	1

	Cycle - Fades through rainbow.

	2

	Reactive - Turns LEDs on when pressed and fades from red to green to blue to off when released.

	3

	Push Off - LEDs are normally white and fade from red to green to blue to off when the keys are pressed.

	4

	Custom - LED color can be set per-key.

	5

	BPM - LEDs turn white when pressed and change color per-key depending on how much you hit them per second when released.

	6

	Color Change - Colors cycle in steps per-press per-key.

7K RGB Keypad

[image: _images/il_fullxfull.2025253833_pcqj.jpg]
A keypad made for 5K and 7K osu!Mania. This keypad features seven LEDs for interesting LED modes and full NKRO. The bottom key uses a 2x width angled keycap for better ergonomics. There is also a multi-function key (this is the same as the side button on my other models) that can be used to either configure your keypad or as a simple escape key.

Multi-function button

	Hold time

	Functionality

	Less than 0.5s

	Escape

	0.5 - 1.5s

	Change LED mode

	more than 1.5s

	Change brightness (Press key 1 to lower and key 2 to raise while holding the button)

	more than 1.5s (on custom LED mode)

	Change color per-key

LED modes

	Order

	Mode

	1

	Cycle - Fades through rainbow.

	2

	Reactive - Turns LEDs on when pressed and fades from red to green to blue to off when released.

	3

	Push Off - LEDs are normally white and fade from red to green to blue to off when the keys are pressed.

	4

	Custom - LED color can be set per-key.

	5

	BPM - LEDs turn white when pressed and change color per-key depending on how much you hit them per second when released.

	6

	Color Change - Colors cycle in steps per-press per-key.

Macropad

[image: _images/il_fullxfull.2050064551_qx8l.jpg]
By popular request, I made a keypad focused less on crazy lights and more on people that want the ability to quickly switch between button mappings. This model features not only the ability to map each key to up to 3 keys, but also six “pages” of mappings that you can change by holding the side button and pressing one of the six keys. It also has a single RGB LED to show the current page.

Side button functionality

	Hold time

	Functionality

	Less than 0.5s

	Escape

	More than 0.5s

	Change mapping page (1-6 depending on face button pressed)

Default button mapping

	Page

	Keys

	1

	A, S, D, Z, X, C

	2

	Q, W, E, A, S, D

	3

	blank, up, blank, left, down, right

	4

	1, 2, 3, 4, 5, 6

	5

	all blank

	6

	all blank

Coming Soon

2x2 Keypad

[image: _images/2x2.png]
Think you need more than two keys for osu? Want to easily be able to restart a song, change volume, and navigate the song menu? Four keys are better for that than two, and the side button functions as a modifier key, effectively giving you 8 mappable keys!

Fightboard

[image: _images/IMG_0934_1024x1024@2x.jpg]
Have you ever been frustrated with joysticks? Do you want something to use on your desk that isn’t a massive box you have to put away somewhere when you’re not using it? Do you prefer the natural spacing of a keyboard over the finger-stretching traditional arcade buttons? Maybe you want something that you can easily use on-the-go. The Fightboard aims to solve all of those problems.

Features

Ergonomic layout

[image: _images/fbLayout.png]
The Fightboard uses a combination of an arrow/wasd cluster at a 15% angle and action buttons following the traditional arcade stick layout but with the spacing of keyboard keys.

Kailh Choc switches

[image: _images/kailhLP.jpg]
Why low-profile switches? One of my main design goals for this controller was to make it as slim as possible to improve ergonomics and portability. These low-profile switches have 3mm of travel compared to the 4mm of Cherry MX switches, with an actuation point 1mm higher as well. They also help the Fightboard come in at only 22mm thick, as the lower half of the switch is also much shorter.

Hot-swap sockets

[image: _images/kailhHS.png]
Unhappy with your switch coice? Want different zones with different types of switches? All you have to do is pull them out and swap them with whatever you prefer, no soldering required.

RGB LEDs

The RGB LEDs indicate the function of each button. The default profile uses Xbox colors for the 4 face buttons, but these can be changed to suit your preferences or the colors used in-game. The LED for each key turns off when the key is pressed and fades back on when released.

Idle mode

The LEDs will turn off after a minute of inactivity. Pressing any button will turn them back on.

Easy remapping

Settings are all built into the keypad and allow you to remap keys on-the-fly.

Console compatibility with adapters

By default, the Fightboard is only compatible with PC. However, its compatibility can be expanded with the purchase with an adapter that converts Xbox 360 controllers to your console of choice. Below is the full compatibility list based on my testing.

	System

	Compatible

	Link

	PC

	Yes

	No adapter needed

	Switch

	Untested

	Amazon [https://www.amazon.com/Gam3Gear-Converter-Nintendo-Controller-Keychain/dp/B0753XF3WT]

	Xbox One

	Yes

	Amazon [https://www.amazon.com/Brook-Super-Converter-Controller-Adapter/dp/B00VY4MMGG]

	PS4

	Yes

	Amazon [https://www.amazon.com/Brook-Super-Converter-Xbox-360-one/dp/B018T3WKNY]

	Xbox 360

	No

	Not compatible

Menu

All settings are accessible from the controller itself by pressing back and start simultaneously.

 Driver Installation

Driver Installation

Windows 8.1 or lower

Before we get started with any remapping or programming, you’ll need the driver for the keypad installed.

Adafruit Drivers [https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/2.2.0/adafruit_drivers_2.2.0.0.exe]

You can install all of the drivers if you’d like, but only the “Feather 32u4, Feather M0, Feather M0 Express…” option is necessary.

For keypads purchased before 3/15/18

Arduino Leonardo Drivers [http://puu.sh/tg52G/f1255ee469.zip]

Download and extract the zip to your desktop and open “dpinst-amd64.exe.” Follow the wizard and say yes when it asks. That’s it!

Windows 10, Mac, and Linux

No driver installation required. You’re done, great job!

 Remapping Your Keypad

Remapping Your Keypad

Windows

If you are on Windows 8.1 or lower and you haven’t already, follow the driver installation guide first.

Driver Installation [http://docs.thnikk.moe/en/latest/driver.html]

Once the drivers are installed, download and extract Termite. You want to make sure you extract since you need to run it with the .ini file in the same directory.

Download Termite [https://puu.sh/w8Zj5/01aa028013.zip]

Upon opening the program, it should immediately connect to the keypad. Follow the directions in the remapper and you’re all set!

	If you have any problems, make sure your settings match these (except for the port since it may be different for you):

[image: _images/6d005fdf84.png]
Make sure to close Termite when you’re done, otherwise it may try to reconnect and lock up your keypad.

Mac and Linux

The procedure for Mac and Linux is the same since we’ll be using the screen command on both. As we do on windows, you’ll first need to find the com port the keypad is using. You can do so by entering this into the terminal:

dmesg | grep tty

If you just plugged the keypad in, it should be the last thing listed. In my case it’s using /dev/ttyACM0. Now we can start serial communications using screen.

screen /dev/ttyACM0 9600

That’s it!

Universal

You can also use the Serial Monitor included in the Arduino IDE. This can be done by downloading the IDE through the Arduino website here:

Download [https://www.arduino.cc/en/Main/Software]

Follow the wizard for installation and launch the program. From here you can select the port from Tools > Ports and open the Serial Monitor by clicking the magnifying glass icon in the top right of the window.

 Programming Your Keypad

Programming Your Keypad

Warning

This guide is NOT for remapping keys. Even if you do reprogram the keypad, you will only be reverting back to the default keymappings. If you’d like to remap your keys, follow the remapping guide.

Visual Studio Code

VS Code is Microsoft’s text editor that makes compiling code extremely easy with extensions. I previously recommended Atom for this install guide, but since PlatformIO now officially recommends VS Code and it does a few things better, I have updated the guide accordingly.

[image: _images/vscode.png]

Download

VS Code can be downloaded here:

Visual Studio Code [https://code.visualstudio.com/download]

You also need to download the code for your keypad. Click the link for your respective model to go to the GitHub page that contains the necessary code. Click the “clone or download” button and then select “download zip.” Extract it to wherever you like (I would recommend your desktop or documents folder.)

	Basic/RGB 2K/4K [https://github.com/thnikk/trinketM0]

	7K Keypad [https://github.com/thnikk/7kKeypad]

	MacroPad [https://github.com/thnikk/trinketM0Macro]

	Touch Keypad [https://github.com/thnikk/touchPad]

Install the PlatformIO extension

PlatformIO is what converts the code into something the keypad can understand. To install it, open VS Code and click on the icon with the 3 connected squares and one floating square in the side bar.

[image: _images/extension.png]
From here, you can type “platformio” into the search bar and click the install button Platformio IDE. Restart if it prompts you to.

[image: _images/pio.png]

Uploading the code to the keypad

Now you can go to File>Open Folder and select the folder you extracted from the GitHub download. The folder you open should contain another folder called src.

[image: _images/folder.png]
Now you can click on the PlatformIO logo (the ant head) in the side bar. If you have anything starting with “Env” under project tasks, click the one for your corresponding model to expand the menu.

[image: _images/upload.png]
Now click upload and you should see a terminal pop up on the bottom of the screen start spitting out information. When it’s done, you should see the environment you selected with “SUCCESS” next to it, meaning your keypad has been programmed!

[image: _images/terminal.png]
If the build fails, you should be able to scroll up to see an error message in red. If you can’t figure out what the problem is (ones related to upload port usually mean the keypad isn’t plugged in or you’re using a bad USB cable,) please message me on Etsy with your error message and I’ll do my best to help you.

Atom (DEPRECATED)

Warning

This is an older version of the guide using Atom instead of VS Code. It should still work, but it may ask you to install Git, which you need to reboot your machine for after. VS Code is the preferred method due to its simplicity. If you HATE proprietary software and refuse to use VS Code, I would recommend using VSCodium, an open source version of VS Code.
The folders containing the source code have also been renamed, so if you get stuck on the uploading step, just be aware that trinketm0 > trinketM0.ino has become src > src.ino.

Atom is a text editor made by GitHub, but has become somewhat redundant as GitHub was purchased by Microsoft. As such, and due to the recommendation from PlatformIO, I recommend using VS Code instead. If you would still like to proceed, you may have to install git and reboot your machine when prompted.

Download Atom

Download and install Atom from here: https://atom.io/

Install PlatformIO

Launch atom and press ctrl and comma which will open the settings menu. Click on install, type “platformio” into the search box and hit enter. Click install on “platformio-ide” and wait for it to install. It should ask if you want to install clang for auto-completion but it’s not necessary so you can just ignore it. When the installation finishes, you should see a button in the top right that tells you to restart to apply the changes. Hit restart and you’re good to go!

Download the Code

Click the link for your respective model to go to the GitHub page that contains the necessary code. Click the “clone or download” button and then select “download zip.” Extract it to wherever you like (I would recommend your desktop or documents folder.)

	Basic/RGB 2K/4K [https://github.com/thnikk/trinketM0]

	7K Keypad [https://github.com/thnikk/7kKeypad]

	MacroPad [https://github.com/thnikk/trinketM0Macro]

	Touch Keypad [https://github.com/thnikk/touchPad]

Uploading the code

[image: _images/d4507e79bb.png]
Open the folder in Atom that you just extracted from the zip that contains the “platformio.ini” file and it should show up in the left panel under “Project.” It should be called <code>-master, but make sure it’s the one that contains platformio.ini since there can be two of the folders depending on how you extracted the zip. Click on the folder with the same title as the parent folder and open the file with the same title with the .ino extension (which should be something like trinketM0-master > trinketM0 > trinketM0.ino, the names will be different depending on the code you’re using). Make sure your keypad is plugged in and press F7. Type “upload” and select the correct option for your model (if you don’t select the model, it will try to upload all of them so make sure to do this.) You may need to try a few times and if it tells you that it can’t find the port, just try unplugging the keypad and plugging it back in. If all goes well, it should upload the code to the keypad!

Making Changes to the Firmware

There are some things you should familiarize yourself with before you get started. These are the most important functions/libararies.

digitalRead() [https://www.arduino.cc/en/Reference/DigitalRead] for reading button inputs.

The neopixel library [https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library] for controlling RGB LEDs.

The EEPROM library [https://www.arduino.cc/en/Reference/EEPROM] for persistent settings.

Arrays [https://www.arduino.cc/reference/en/language/variables/data-types/array/] for variables in for loops.

Data types [https://www.tutorialspoint.com/arduino/arduino_data_types.htm] for variables in general.

for loops [https://www.arduino.cc/en/Reference/For]

switch/case statements [https://www.arduino.cc/en/Reference/SwitchCase]

millis timers [https://learn.adafruit.com/multi-tasking-the-arduino-part-1/using-millis-for-timing]

I wouldn’t recommend trying to change random variables unless you can actually follow the logic and see exactly what they’re changing. Some of them may tie in somewhere else and cause unexpected results. Future versions of the firmware will make changes easier by separating variables based on editable settings and things like count